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In-plane atom surface scattering perturbation theory within a generalized Langevin equation formalism is
proposed to account for the asymmetry found in angular distributions of heavy rare gas atoms scattered by
corrugated surfaces. We show that when the surface corrugation is represented in terms of the first two �sine�
Fourier components, one finds an asymmetric angular distribution. This asymmetry reflects the ratchetlike form
of the effective corrugation. Adding in higher-order terms can also increase the number of rainbow scattering
angles. Three rainbows are found for a second-order sine term in the corrugation, four symmetrically spaced
rainbow angles are found when adding in a second-order cosine term to the corrugation. Analytic expressions
for the angular distribution are derived in terms of a Morse oscillator model. The theory accounts well for the
asymmetry and predicts its disappearance as the incident scattering angle is increased. It also features a
decrease in the distance between the rainbow angles as the angle of incidence is increased and as the incident
energy is increased. The theory is successfully applied to the experimental results of Kondo et al. �Eur. Phys.
J. D 38, 129 �2006�� for the scattering of Ar on LiF�100� and the results of Amirav et al. �J. Chem. Phys. 87,
1796 �1987�� for the scattering of Xe on Ge�100� and Ar and Kr on Ag�100�.
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I. INTRODUCTION

During the past fifty years a large body of experimental
data has been amassed about the scattering of atoms on sur-
faces. Much of the work was concentrated on light atom
scattering such as He1–6 due to the interest in quantum
diffraction,7,8 selective adsorption resonances,9,10 and pho-
non dispersion curves. However, many heavy atom systems
have also been studied, including heavy rare gases such as Ar
�Refs. 11–29� and Xe.30–37 For these, a classical theory of
scattering is appropriate. If one neglects the interaction with
surface phonons and one assumes that the scattering poten-
tial in the horizontal direction is a single cosine or sine term,
then theory predicts that the angular distribution will be sym-
metrically displaced about the specular scattering angle.38–42

If rainbow scattering is important then one will observe two
symmetrically displaced peaks about the specular angle,
which is now a minimum in the angular distribution. If the
broadening induced by surface phonons is larger than the
spacing between the rainbow angles then the distribution
should be symmetrically centered with a maximum at the
specular angle.43,44 This may occur as a result of phonons or
disorder, for example, when scattering from a liquid.45

Although this simplistic picture is valid as a zeroth-order
approximation, theory, experiments, and numerical simula-
tions provide a richer picture. In many cases, the angular
distribution is somewhat shifted usually to superspecular
angles. This is the case for example for the scattering of Ar
on an Ag�111� surface where the angular distributions are
shifted to superspecular angles.23 Similarly, in the scattering
of Ar on a Ir�110� surface15 or Ne on an Au�110� surface, in

the �11̄0� azimuth, one finds that the peak in the angular
distribution is superspecular. The first observation of rainbow
scattering was for the scattering of Ne on LiF�001�, showing

an asymmetric double peaked distribution.46 Rainbow scat-
tering and strong asymmetry are also observed when Ne is
scattered along the �001� azimuth47 of Au�110�. Asymmetric
rainbow scattering has been observed for the scattering of Ar
from Cu�110�.12 More recent work on the scattering of Ar on
a Ru�0001� surface exhibits a bell-shaped angular distribu-
tion, which is superspecular when the incident angle is 50°.
When the scattering energy is 0.56 eV and the incident angle
is 60°, one observes asymmetric rainbow scattering.25 When
Xe is scattered from a Pt�111� surface one observes super-
specular scattering over a broad range of incidence
energies.32

There are a variety of reasons for observing angular dis-
tributions which differ from the simplistic picture. In the
derivation of the washboard model, Tully38 noted that when
the angle of incidence is not zero the approaching particle
may be exposed to an asymmetric corrugation since the par-
ticle has a larger probability of striking a region where the
surface slopes toward the incoming particle. This asymmetry
leads to an asymmetric angular distribution.

Especially at large incidence angles or low energies, the
projectile may be partially trapped in the physisorption well.
It then desorbs statistically and so contributes a broad back-
ground to the part of the distribution, which is directly scat-
tered. Even when the scattering is direct, in the sense that the
atom comes in and immediately goes out, one may observe a
shift in the location of the maximum of the peak. As shown
in our recent studies,41,42 the shift may be induced through
the inelastic interaction with the surface. If the friction felt
by the particle is larger along the horizontal direction than
the vertical, the momentum in the horizontal direction is re-
duced more than the vertical and so one should observe sub-
specular scattering. Conversely, if the friction along the ver-
tical direction is larger, as is usually the case when the
vertical energy is not too small, then the momentum loss in
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the vertical direction is large and one should observe super-
specular scattering. However, this argument does not suffice
to explain the superspecular scattering in a system such as Ar
on Ag�111�, where the shift seems to be constant over a very
large range of energies.23 Moreover, we are not aware of a
simple theoretical analysis which explains the strong asym-
metry observed especially when rainbow scattering is impor-
tant. This is the central issue of this paper.

In most simplified models of the scattering,38–40 as in our
previous studies,41,42 the potential along the horizontal direc-
tion has a single Fourier component, whose period is the
lattice length of the surface. In this paper we will consider
the effect of adding a higher �second� -order Fourier compo-
nent on the scattering of the particle. We find that the second-
order term can lead to asymmetric scattering, to a multi-
peaked angular distribution and to shifts in the peak of the
distribution. It makes a real difference if the second-order
term is a sine or a cosine function. The former leads to asym-
metric scattering while the latter leaves the scattering sym-
metric. When the second-order sine term is added to the
first-order term one finds a ratchet like corrugation which is
the source of asymmetry. When the second-order term is a
cosine term, the potential remains symmetric however the
second-order term may add a rich structure to the angular
distribution.

In this paper we limit ourselves to in-plane scattering, so
we need to consider only two degrees of freedom; the motion
vertical to the surface and the horizontal motion along the
surface. In Sec. II we consider the angular distribution in-
duced by the second-order term in the absence of interaction
with the surface phonons. The theory in the presence of in-
elastic interactions is considered in Sec. III. An analytic
theory based on a Morse potential for the vertical interaction
of the atom with the surface and Ohmic friction is presented
in detail in Sec. IV. It is then applied to experimental data.
We end with a Discussion of further implications of this
study in Sec. V.

II. ELASTIC SCATTERING

A. Preliminaries

The interaction potential V�x ,z� �with x and z being the
horizontal and vertical coordinates, respectively� has typi-
cally two components. A potential of interaction in the ver-

tical direction V̄�z� and a corrugation potential. The instanta-
neous vertical interaction is modulated by the corrugation
function h�x� so that the potential of interaction is

V̄(z+h�x�)� V̄�z�+ V̄��z�h�x�. We will therefore study the
classical scattering for a particle with mass M on a surface
with lattice length l whose motion is governed either by the
potential

Vss�z,x� = V̄�z� + V̄��z��h1 sin�2�x

l
� + h2 sin�4�x

l
�	

�2.1�

or by the potential Vcc�x ,y� where the first- and second-order
corrugation terms are cosine functions, or by the potentials

Vcs�x ,y� and Vsc�x ,y�, where one of the two terms is a sine
function and the other is a cosine function. h1 and h2 are,
respectively, the corrugation heights for the first- and second-
order terms. It is a matter of simple algebra to show the
following symmetries:

Vcc�z,
l

2
− x� = Vcc�z,

l

2
+ x� , �2.2�

Vsc�z,
l

4
− x� = Vsc�z,

l

4
+ x� , �2.3�

Vss�z,
l

2
− x� = − Vss�z,

l

2
+ x� , �2.4�

Vcs�z,
l

4
− x� = − Vcs�z,

l

4
+ x� �2.5�

so that the corrugation potential is symmetric for Vcc and Vsc,
while it is antisymmetric for Vss and Vcs. As we shall see
below, these symmetry properties imply that the angular dis-
tribution is symmetric about the specular angle for Vcc and
Vsc but it is not symmetric when the potential is a ratchet
potential. Furthermore one readily finds that within each
symmetry the two potentials are related to each other by a
shift and reflection:

Vsc�z,x −
1

4
� = − Vcc�z,x� , �2.6�

and

Vcs�z,
l

4
− x� = Vss�z,x� . �2.7�

In the absence of friction the classical motion is defined
via the classical Hamiltonian

H =
px

2 + pz
2

2M
+ V�z,x� . �2.8�

The incident particle at the time −t0 is assumed to be suffi-
ciently far from the surface and has the incident momenta px0
and pz0. After the collision, at the time t0 �which is assumed
to be sufficiently long such that the particle is far from the
surface and no longer feels the interaction potential�, the par-
ticle will have the final momenta px�t0�, pz�t0�. The incident
scattering angle is by definition

�0 = tan−1� px0

pz0
� ,

and the scattered angular distribution is41,42

P�� f� =
1

l



0

l

dx��� f − tan−1� px�t0�
pz�t0�

�	 . �2.9�

This will be our working expression below for obtaining
the angular distribution.
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B. Momentum shifts

To obtain the angular distribution one must estimate the
final momenta after the scattering process. This is achieved
by perturbation theory for which the small parameters are the
corrugation heights. From Hamilton’s equations for the hori-
zontal motion and the Vss potential we find that

px�t0� = px�− t0� + �px

= px�− t0� −
2�

l



−t0

t0

dtV̄��zt�

��h1 cos�2�xt

l
� + 2h2 cos�4�xt

l
�	 . �2.10�

The unperturbed motion in the vertical direction is such that
the trajectory is at the turning point at the time t=0. In the
horizontal direction the motion is to zeroth order that of a
free particle �parallel momentum conservation�, that is,

xt = x�− t0� +
px0

M
�t + t0� � x�0� +

px0

M
t . �2.11�

Explicitly though, we do not assume parallel momentum
conservation, it changes as a result of the scattering process,
as determined by Eq. �2.10�. Using the symmetry of the mo-

tion along the vertical direction �V̄��zt� is symmetric with
respect to the time� we thus find that

px�t0� � px0 − pz0�K1 cos�2�

l
x�0�� + K2 cos�4�

l
x�0��	 .

�2.12�

where we used the notations

K1 =
2�

lpz0
h1


−t0

t0

dtV̄��zt�cos��xt� , �2.13�

K2 =
4�

lpz0
h2


−t0

t0

dtV̄��zt�cos�2�xt� , �2.14�

and the horizontal frequency is defined as

�x =
2�

l

px0

M
. �2.15�

In Sec. IV we show that the rainbow angle function K1 re-
duces to the known result for rainbow scattering from a hard
wall.39

The final momentum in the vertical direction is also
shifted,

pz�t0� = − pz0 + �pz = − pz0 +
px0

pz0
�px, �2.16�

where the second equality is derived from energy conserva-
tion.

C. Angular distribution and the sine potentials

Inserting these results into the expression for the angular
distribution �2.9� and expanding to lowest order in the hori-

zontal momentum shift, we find the interim result,

Pss�� f� =
1

l



0

l

dx��� f + �0 − K1 cos�2�

l
x� − K2 cos�4�

l
x�	 ,

�2.17�

where the subscript reminds us that this is the result when the
corrugation potential is a sum of two sine terms. The argu-
ment of the “delta” function is nothing but the well-known
deflection function of classical scattering theory as it gives
the dependence of the scattering angle on the impact param-
eter, which is the horizontal coordinate. The integration over
the delta functions is readily carried out �change variables
from x to z=K1 cos� 2�

l x�� to find that the angular distribution
is given by the expression

Pss�� f� =
1

�

H�K1
2 − z+

2�
�K1

2 − z+
2 
1 −

4K2z+

K1
2 
−1

+
1

�

H�K1
2 − z−

2�
�K1

2 − z−
2 
1 −

4K2z−

K1
2 
−1

, �2.18�

where H�x� is the Heaviside function and z� are the solutions
of the quadratic equation

� f + �0 + K2 + z − 2K2
z2

K1
2 = 0, �2.19�

so that

z� =
K1

2 � K1�K1
2 + 8K2�� f + �0 + K2��1/2

4K2
. �2.20�

As shown below, these results imply that depending on the
magnitude of K1 and K2 one has either two or three rainbow
angles, and these are no longer symmetrically distributed
about the specular angle.

In the limit that the second-order corrugation is much
smaller than the first-order corrugation, that is

K2

K1
	1, one

finds that z−�−�� f +�0+K2� while z+�K1
2 /K2
K1 so that it

does not contribute to the angular distribution. In this limit
the angular distribution reduces to

Pss�� f� =
1

�

H�K1
2 − �� f + �0 + K2�2�

�K1
2 − �� f + �0 + K2�2

. �2.21�

In the opposite limit that the first-order term vanishes �K1
=0� and only the second-order term remains, then one ob-
tains the same result, except that K1 must be replaced by K2
in Eq. �2.21�.

If the second-order term is weak, it causes a shift in the
center of the distribution relative to the specular angle. The
sign of K2 depends on the dynamics and the incident scatter-
ing angle. The higher-order corrugation can thus induce both
subspecular and superspecular scattering. We then note the
asymmetry. When z−=K1 the divergence strength is
�1−

4K2

K1
�−1, while when z−=−K1 the divergence strength is

�1+
4K2

K1
�−1.

To provide further insight into the asymmetric effects that
one may obtain, we plot in Fig. 1 the angular distribution
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obtained for various values of the second-order corrugation.
The angular distributions are obtained by approximating the
Dirac delta function in Eq. �2.17� by a Gaussian with a small
width �=0.0002 radians2. �� is the angular difference
�+�i0. Panel a shows the distribution with a weak second-
order corrugation �K1=10° , K2=1°�. Even a small second-
order term, causes the distribution to be noticeably asymmet-
ric. The minimum is at a superspecular angle and the two
rainbows have noticeably different probabilities. Panel b of
the same figure shows the angular distribution when the two
rainbow angles are the same �K1=K2=10°�. Now, the third
peak comes into play, while the distribution remains highly
asymmetric. Finally in panel c we plot a case for which the
second-order term is larger than the first-order term
�K1=5° , K2=10°�.

In the examples shown in Fig. 1, the peak at superspecular
angles is typically smaller than the peak at subspecular
angles. This is a result of the fact that both rainbow functions
K1 and K2 were chosen to be positive. If one of them is
negative, then one obtains the opposite result, which is the
subspecular peak is smaller than the superspecular peak. The
sign of the rainbow functions is determined by the sign of the
corrugation parameters h1 and h2, either of which can be
positive or negative.

It is well known that the rainbow angles are defined by
the points at which the derivative of the deflection function
with respect to the impact parameter vanishes. As is clearly
evident from Eq. �2.17� the deflection function is

� f�x� = K1 cos�2�

l
x� + K2 cos�4�

l
x� − �0. �2.22�

The derivative of this function is then

d� f�x�
dx

= −
2�

l
sin�2�x

l
��K1 + 4K2 cos�2�

l
x�	 .

�2.23�

It vanishes for x�=0, l /2 at which � f�x��+�0= �K1+K2. A
further rainbow angle may be found if the second term on the
right-hand side of the equation vanishes. This can occur only
if �4K2�
 �K1�. When the second-order term is small, it intro-
duces only an asymmetry, and there are only two rainbow
angles. When it increases beyond �K1 /4� one finds an addi-

tional rainbow angle at � f�x��=−K2−
K1

2

8K2
−�0. Inspection of

Fig. 1 shows that these are precisely the values of the rain-
bow angles.

D. Angular distribution and the cosine potentials

In this case, the momentum shift in the horizontal direc-
tion becomes

px�t0� � px0 + pz0�K1 sin�2�

l
x�0�� + K2 sin�4�

l
x�0��	 ,

�2.24�

and K1 and K2 are given as in Eqs. �2.13� and �2.14�. As in
the previous section we then have that the angular distribu-
tion is

Pcc�� f� =
1

l



0

l

dx��� f + �0 + K1 sin�2�

l
x� + K2 sin�4�

l
x�	

= �
j=1

4
1

2�K1

1

��1 − �zj
2/K1

2� − 2��1 − �2zj
2/K1

2���
, �2.25�

with �=K2 /K1 and the integration was carried out with the
change in variables as before. Now one obtains a quartic
equation for the variable zj,

� f + �0 − zj + 2�zj�1 −
zj

2

K1
2 = 0, �2.26�

where solutions in the range −K1�zj �K1 are admissible.
Since

�zj

�� f
�0 one readily finds that an extremum of the dis-

tribution is at � f =−�0, which is at the specular angle. One
then finds that Pcc�� f +�0�= Pcc�−� f −�0�, which implies that
the angular distribution is symmetric about the specular
angle. This is due to the fact that the solutions of Eq. �2.26�
come in pairs. If zj

� is a solution for � f +�0=� then −zj
� is a

solution when � f +�0=−�. This implies, for example, that to
lowest order in the small parameter � one finds

P�� f� =
1

��K1
2 − �� f + �0�2

+ O��2� . �2.27�

One can work through the analysis for the deflection function
in this case too. However, the rainbow angles are now given
as solutions of a quadratic equation, so the analysis is some-
what more complex.

Here too we provide some plots which demonstrate the
effect of the second-order term. Panel a of Fig. 2 shows the

(c)

(b)(a)

FIG. 1. �Color online� Asymmetric angular distributions—Using
the sine-sine potential one obtains the angular distributions �normal-
ized to 2�� shown in panels a–c. Panel a corresponds to a weak
second-order term �K1=10° , K2=1°�, panel b to a moderate
second-order term �K1=K2=10°�, and panel c to a strong second-
order term �K1=5° , K2=10°�. For further details see the text.
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angular distribution �obtained as in the asymmetric case by
approximating the Dirac delta function in Eq. �2.17� by a
Gaussian with a small width �=0.0002 radians2� with a
weak second-order corrugation �K1=10° , K2=1°�. In this
case, the small second-order term is hardly felt, the distribu-
tion remains double peaked and symmetric about the specu-
lar angle. Increasing the second-order contribution such that
K1=K2=10° leads to a four peaked distribution, one now
“sees” the four rainbow angles. Finally in panel c we plot a
case for which the second-order term is larger than the first-
order term �K1=5° , K2=10°�.

It remains to consider the cases of Pcs�� f� and Psc�� f�. As
already shown in Eq. �2.7� the potential Vcs is a ratchet po-
tential, which can be transformed into the potential Vss so it
has the same angular distribution. Similarly the angular dis-
tribution for the potential Vsc is the same as the angular dis-
tribution for the potential Vcc.

III. INELASTIC SCATTERING

A. Model Hamiltonian

We assume that both the vertical and horizontal coordi-
nates fluctuate due to interaction with the thermal phonon
bath of the surface. We then use the same framework as in
Ref. 42. The interaction of the horizontal motion with the
phonon bath is modeled with a coupling between the hori-
zontal coordinate and the bath, which is linear in the bath
coordinates and modulated by a space-dependent function
g�z�, which vanishes when the vertical coordinate is large. In
the presence of the phonon bath, the vertical coordinate fluc-
tuates so that the interaction potential of the incident atom

with the surface would be V̄�z−�z�. Allowing only small
fluctuations

V̄�z − �z� � V̄�z� − �z
dV̄�z�

dz
�3.1�

leads us to assuming that the Hamiltonian governing the
scattering event is

H =
px

2 + pz
2

2M
+ Vmn�z,x�

+
1

2�
j=1

N �pjz
2 + � jz

2�xjz
−

cjz
�M

� jz
2 V̄��z�	2�

+
1

2�
j=1

N �pjx
2 + � jx

2�xjx
−

cjx
�M

� jx
2

l

2�
sin�2�x

l �g�z�	2�,

m = s,c; n = s,c . �3.2�

The horizontal and vertical bath degrees of freedom are char-
acterized by the mass weighted momenta and coordinates pji

,
xji

, j=1, . . . ,N; i=x, z. Translational invariance of the model
is assured since the term coupling the horizontal motion to
the respective phonon bath is periodic in the horizontal co-
ordinate. When the particle is far from the surface it does not
interact with the phonons, so that the bath Hamiltonian �in
mass weighted coordinates and momenta� is defined to be

HB =
1

2 �
j=1, i=x,z

N

�pji
2 + � ji

2xji
2� . �3.3�

As is well known, for the linearly coupled harmonic baths
the equations of motion in the continuum limit are general-
ized Langevin equations �GLEs�. Introducing the spectral
densities

Ji��� =
�

2 �
j=1

N cji
2

� ji

��� − � ji
�, i = x,z �3.4�

and associated friction functions

�i�t� =
2

�



0

�

d�
Ji���

�
cos��t�, i = x,z , �3.5�

the GLE for the horizontal motion takes the form �as may be
readily seen by using the known forced harmonic oscillator
solution for the bath variables and inserting it into the equa-
tions of motion for the system degrees of freedom�

�MFx�t�cos�2�xt

l
�g�zt�

= Mẍt +
�V�zt,xt�

�xt
+ M cos�2�xt

l
�g�zt�

�

−t0

t

dt��x�t − t��� d

dt�
� l

2�
sin�2�xt�

l
�g�zt��	� .

�3.6�

(c)

(b)(a)

FIG. 2. �Color online� Symmetric angular distributions—Using
the cosine cosine potential one obtains the angular distributions
�normalized to 2�� shown in panels a–c. Panel a corresponds to a
weak second-order term �K1=10° , K2=1°�, panel b to a moderate
second-order term �K1=K2=10°�, and panel c to a strong second-
order term �K1=5° , K2=10°�. For further details see the text.
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The GLE for the vertical motion is more complicated, but is
not needed explicitly. As in the previous section for the pure
system dynamics, the unperturbed vertical motion is taken to
be an even function of time, such that the particle reaches the
vertical turning point at time t=0. Trajectories are initiated at
the time −t0. The projectile is initially sufficiently distant
from the surface, such that at the vicinity of z0 all the cou-
pling functions vanish and the motion is that of a free par-
ticle. The noise functions

Fi�t� = �
j=1

N

cji�xji
cos�� ji

�t + t0�� +
pji

� ji

sin�� ji
�t + t0��� ,

i = x,z �3.7�

therefore depend only on the initial conditions of the respec-
tive phonon bath. They obey the fluctuation dissipation rela-
tions

�Fi�t1�Fj�t2�� = �ij
M

�
�i�t1 − t2�, i, j = x,z , �3.8�

where �=1 /kBT is the inverse temperature �kB is Boltz-
mann’s constant� and the averaging is over the thermal dis-
tribution associated with the classical bath Hamiltonian as
given in Eq. �3.3�.

B. Classical perturbation theory

1. Energy loss and the change in the final momenta

When considering the motion of a rare gas projectile
whose interaction with the surface and the phonons does not
include any strong chemical interactions, it is reasonable to
assume that the system bath couplings are weak and Ohmic,

�i�t� = 2�i��t�, i = x,z . �3.9�

As in our previous work and in the previous section, we will
follow a perturbation approach toward deriving the angular
distribution. Explicit expressions for the final momenta, the
averaged, and fluctuational energy losses of the incident par-
ticle to the bath are provided in Appendix A. Here, we note
that for the “ss” potential of Eq. �2.1�, to first order in the
corrugation heights, friction coefficients, and noise strengths,
we find �see also Ref. 42� from the GLE �Eq. �3.6�� that the
final momentum in the horizontal direction is given by the
expression

px�t0� � px0 − pz0�K1 cos�2�

l
x�0�� + K2 cos�4�

l
x�0��	

+ �px,1 + �px,2

� px0 + �px0. �3.10�

Comparing to the previous result in the absence of friction
2.12, we note that the coupling to the phonon bath induces a
frictional momentum shift �px,1 and a noise induced momen-
tum shift �px,2. Explicit expressions are given in Appendix
A.

The energy loss to the bath �see Refs. 48 and 42� may be
divided into two parts, an average energy loss, and a fluctua-
tional energy loss,

�EB = �
i=x,z

���EB�i + �EBi
� . �3.11�

These have been further subdivided into separate average
and fluctuational energy losses in the horizontal and vertical
directions. Explicit expressions for the energy losses are
given in Appendix A, here we note that the energy losses
depend on the initial impact parameter.

The variances of the fluctuational energy losses are pro-
portional to the average energy losses,

��EBi

2 � =
2

�
��EB�i, i = x,z . �3.12�

The shift in the final momentum in the vertical direction is
obtained via energy conservation as in the uncoupled case,
except that here one has to take into consideration the energy
losses to the phonon baths,

pz�pz = M�EB + px�px. �3.13�

2. Angular distribution

The expression for the angular distribution has the same
form as in the uncoupled case, except that now one has to
include the averaging over the phonon baths. For this pur-
pose we note

tan−1� px�t0�
pz�t0�

� � − �i0 + ��i, �3.14�

where to lowest order in the momentum shifts

��i � −
�px

pz0
−

cos2��i0�
pz0

2

px0

pz0
M�EB. �3.15�

The integration over the bath variables is effected as in
Appendix A of Ref. 42. One finds that the angular distribu-
tion is given by the expression

P��� =
1

l



0

l

dx�t0�
1

���2�x�t0��
exp�−

�� + �i0 − K1�px0,pz0�cos�2�

l
x�t0�� − K2�px0,pz0�cos�4�

l
x�t0�� + ��1�x�t0���2

�2�x�t0��
� ,

�3.16�

where the variance is
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�2�x�t0�� =
tan2��i0�

�E0
� ��EB�

E0
+ �x


−t0

t0

dtg2�zt��1 – 2 cos�4�

l
x�t0�	�� +

�x

�E0
�


−t0

t0

dtg2�zt��1 +

cos�4�

l
x�t0�	cos�2�xt�

cos2��i0�
��

�3.17�

and the angular shift is

��1�x�t0�� = tan��i0�� ��EB�
2E0

−
�x

2



−t0

t0

dtg2�zt�� .

�3.18�

These expressions are identical in form to the previous ex-
pressions derived for in plane scattering in Ref. 42. The im-
portant difference comes from the added term in the corru-
gation. This induces the extra structure in the angular
distribution, as already described qualitatively in the previ-
ous section. The coupling to the phonon bath smoothens the
distribution. If the coupling is strong, the phonon coupling
will dominate and the distribution will be a single bell-
shaped Gaussian-like peak. However for weak coupling one
will observe a Gaussian like broadening of the multiple
peaks and the asymmetric structures described in the
previous section.

IV. EXAMPLES AND EXPERIMENTAL APPLICATIONS

A. Analytical results for a Morse oscillator model

The theory developed in the previous section can be
solved to a certain extent analytically if one chooses the ver-
tical potential to be the Morse oscillator potential,

V̄�z� = V0�1 − exp�− �z��2 − V0. �4.1�

The trajectory for the vertical motion is known analytically,

exp��zt� = −
cos���
sin2���

�cosh��t� + cos���� , �4.2�

where the frequency � is:

�2 =
2�2Ez

M
=

�2pz0
2

M2 , �4.3�

and we used the notation

cos��� = −� V0

�Ez + V0�
, sin��� =� Ez

�Ez + V0�
.

�4.4�

Explicit expressions for the rainbow angle functions can be
obtained by noting that

I1 =
1

�



0

�

d� cos��̄���cosh��� + cos����−1

=
� sinh��̄��

� sin���sinh��̄��
. �4.5�

Using the notation

In =
1

�



0

�

d� cos��̄���cosh��� + cos����−n, �4.6�

one has the recursion relation

In+1 =
1

n sin���
�In

��
. �4.7�

One then finds that the analytical expressions for the rainbow
angle functions are

K1�p0,�i0� =
4�2h1�̄ cosh��̄��

l sinh��̄��
, �4.8�

K2�p0,�i0� =
16�2h2�̄ cosh�2�̄��

l sinh�2�̄��
, �4.9�

with

�̄ =
�x

�
=

2�

�l
�tan��i0�� . �4.10�

Through the argument of the “delta” function in Eq. �2.17�
this then gives an analytical expression for the deflection
function.

One may readily relate these expressions with the “clas-
sical” expression for rainbow scattering39 when the potential
in the vertical direction is a hard wall by taking the limit that
the Morse stiffness parameter �→�. One finds for example,
that

lim
�→�

K1�p0,�i0� =
4�h1

l
, �4.11�

and this is the weak corrugation limit of the known expres-
sion for hard wall rainbow scattering

�rainbow + �i0

2
= � tan−1�2�h1

l
� . �4.12�

The angle � goes from � to � /2 as the vertical energy
increases from 0 to �. This implies that the rainbow angle
functions decrease as the energy increases. More interest-
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ingly, the ratio of the second-order rainbow function to the
first-order rainbow function

K2�p0,�i0�
K1�p0,�i0�

=
2h2 cosh�2�̄��

cosh��̄��h1 cosh��̄��
�4.13�

also decreases as a function of energy. This means that typi-
cally the asymmetry induced by the second-order term will
be smaller as the energy increases.

To complete the theory it is necessary to specify the func-
tion g�z� which couples the phonons to the horizontal mo-
tion. We choose the function g�z� which scales the lateral
corrugation in Eq. �3.2� to be consistent with the attenuation
of the repulsive component of the Morse potential �4.1�:

g�z� = exp�− 2�z� . �4.14�

The resulting expressions for the various energy losses and
shifts are given in Appendix B. One can then compute the
angular distribution with a single remaining numerical inte-
gration over the horizontal coordinate.

Within this Morse oscillator model we have six free
parameters—the well depth of the Morse oscillator V0; the
Morse oscillator stiffness parameter �; the corrugation pa-
rameters h1 and h2; and the Ohmic friction coefficients �x
and �z. The lattice length l and the mass M are assumed to be
known. In the following subsections we will use this model
to analyze experimental results for the scattering of atoms on
surfaces.

B. Experimental applications

1. Preliminaries

In this subsection we will apply the theory to a number of
experimental examples in which the underlying potential is
symmetric while the measured angular distribution is asym-
metric. This calls into question our whole approach. For ex-
ample, for scattering of Ar on LiF�100� it is evident that the
potential energy surface is symmetric. It would then be
seemingly unjustified to use an asymmetric fitting of the sur-
face. However as noted by Tully38 when considering the
washboard model, “the probability P2�x� of striking the sur-
face at position x is not uniform. There is a larger probability
of striking a region where the surface slopes toward the in-
coming beam than where the surface slopes away.” If the
corrugation function is h�x� then the probability is38

P2�x� =
1

l
�1 −

dh�x�
dx

tan��i0�	 . �4.15�

Consider then the simple sinusoidal corrugation function

h�x� = h sin�2�x

l
� .

The effective corrugation hef f�x� “seen” by the incident par-
ticle is then a product of the probability of arriving at the
point x and the actual corrugation at that point,

hef f�x� = P2�x�h�x�

=
h

l
�1 −

2�h

l
cos�2�x

l
�tan��i0�	sin�2�x

l
�

=
h

l
sin�2�x

l
� −

�h2

l2 tan��i0�sin�4�x

l
� , �4.16�

showing explicitly how the asymmetry created by the actual
path of the particle may be modeled in terms of an added
higher-order sin term in the corrugation.

Within the perturbation theory approach used in this pa-
per, this asymmetry does not arise when using a single term
for the corrugation. One notes that the second-order term
goes as h2 while the perturbation theory is correct only to
order h. From a physical point of view one derives the asym-
metry within the washboard model by noticing that for dif-
ferent values of the impact parameter, the particle encounters
the hard wall at different vertical positions. In other words,
the vertical potential encountered by the particle depends on
the impact parameter. Within the first-order perturbation
theory, the vertical potential felt by the particle is indepen-
dent of the impact parameter, hence the asymmetry does not
appear naturally within it. However, it may be modeled by
adding in the second-order sin term. This then creates an
effective deflection function which is asymmetric and leads
to asymmetry in the angular distribution. This is the proce-
dure we employ in this paper to fit the experimental results.

2. Scattering of Ar on LiF(100)

Kondo et al.28 recently reported their finding for the ex-
perimental angular distributions of Ar atoms scattered from a
LiF�001� surface �in the �100� direction� as a function of
incident energy at a fixed 45° angle of incidence. Their ex-
perimental setup is such that the width of the incident beam
is typically 1 degree or less, thus providing very well-
characterized angular distributions. At all measured energies
they find an asymmetric double peaked angular distribution,
typical of rainbow scattering. They find that the rainbow
angles decrease with increasing incident energy. They fit
their experimental results to the washboard model, albeit by
using a different rainbow angle for each energy separately.
Their rainbow angle parameter decreases with increasing en-
ergy from a value of 10.4° at 315 meV to 7.0° at 705 meV
incident energy. They consider this to be a counterintuitive
lessening of corrugation with increasing energy.

We used the Morse potential model for the same data. We
use the atomic mass of Ar for the projectile �M =39.948�, the
well depth V0=88 meV as reported in Ref. 49, and the lat-
tice length l=4 Å as measured by Ekinci and Toennies.50

The remaining parameters were set to �=1 /2 Å−1, h1=
−0.1217 Å, h2=0.1428 Å, and �x /�0= .0002536, where
�0=���2V0 /M� is the harmonic frequency of the Morse po-
tential and M2�0

3�z=0.001820. The last two friction param-
eters are given in reduced form and show that the friction is
weak. We note that this is a five parameter theory, as all other
parameters were obtained from experimental knowledge.

The results are shown in Fig. 3, where we plot the theo-
retical angular distributions as solid lines and the experimen-
tal angular distribution as solid circles for the incident ener-
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gies of 315, 435, 525, 620, and 705 meV, respectively. The
angle of incidence is 45° and the surface temperature was
taken to be 300 °K. We find that the theory fits the experi-
mental distributions quantitatively; the fits are slightly better
than those reported by Kondo et al. using the washboard
model. Perhaps most notable is the fact that we did not have
to fit each distribution separately; the theory accounts cor-
rectly for the energy dependence of the rainbow angles. We
also note that the distributions are not symmetric; it was
necessary to add the second-order corrugation term. In Fig. 4
we plot the incident energy dependence of the rainbow angle

functions K1 and K2. One notes that both functions decrease
with increasing energy, even though the corrugation param-
eters are of course fixed.

The decrease in the rainbow angles with energy is a result
of the dynamics and does not imply that the corrugation
becomes smaller with increasing energy, as suggested by
Kondo et al. In fact, as the energy increases, so does the
energy loss, as shown in Fig. 5 for the same system. Here the
solid line is the energy loss along the vertical direction while
the dashed line is the energy loss in the horizontal direction.
One notes that both energy losses increase with increasing
energy, as expected intuitively. As the energy increases, the
atom creates a larger displacement of the surface atoms. In-
terestingly, the relative average energy losses �the ratio of the
energy loss to the incident energy� are a decreasing function
of the energy.

3. Scattering of Xe on Ge(100)

Amirav et al.31 published measured angular distributions
for the scattering of Xe on the Ge�100� surface at different
incidence angles and different temperatures. At the incidence
energy of 2.4 eV and 45° incidence scattering angle, they
find an asymmetric double peaked distribution. Increasing
the scattering angle to 70° leads to a single peaked distribu-
tion. Increasing the temperature of the surface from T
=297 °K to T=823 °K washes out the double peaked struc-
ture, leading to a single peak whose maximum is somewhat
larger than the specular angle.

As we shall show, there is good agreement between
theory and experiment. In Ref. 51 the speed ratios of the
incident beam are reported as ranging between 5 and 8%.
This implies that our theoretical results must take this broad-
ening into account. To simplify, we accounted for this experi-
mental broadening by adding a constant width of 0.2 radians
to the width of the angular distribution as given in Eq. �3.17�.

In panel a of Fig. 6 we plot the broadened angular distri-
butions obtained from the Morse potential model using the

FIG. 3. �Color online� Angular distributions for the scattering of
Ar on a LiF�100� surface. The solid lines show the angular distri-
butions obtained with the Morse potential model at the incidence
angle of 45 degrees. The solid circles are the experimental angular
distributions from the paper by Kondo et al. �Ref. 28�. The heights
of the experimental distributions were normalized to agree with the
normalized theoretical distributions. The plots from bottom to top
show the angular distributions for the energies 315, 435, 525, 620,
and 705 meV, respectively. Each distribution is shifted vertically
from the previous one by 0.06. Note the quantitative agreement
between experiment and theory.

FIG. 4. �Color online� Incident energy dependence of the �abso-
lute value of the� rainbow angle functions for the scattering of Ar on
LiF�100�. The solid line is for K1 the dashed line for K2. The model
parameters are the same as for Fig. 3. Note the decrease in the
rainbow angle functions with increasing incident energy.

FIG. 5. �Color online� Incident energy dependence of the aver-
age energy loss in the vertical �solid line� and horizontal �dashed
line� directions. The parameters are the same as used for Figs. 3 and
4. Note the increase in the average energy losses with incident
energy.
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parameter values V0=250 meV,52 l=6 Å, �=1 /3 Å−1, M
=131.29 a.m.u, h1=−0.952 Å, h2=1.164 Å, �x /�0
=0.0102, and M2�0

3�z=0.002675. The temperature T
=297 °K. The solid lines correspond to the theoretical angu-
lar distributions for the incident angles of 45° and 70° while
the solid circles are the experimental results, adapted from
Ref. 31. The normalized theoretical angular distribution at
45° and 70° angles of incidence are multiplied, respectively,
by the constant factors of 2.08 and 1.96 so as to have the
same peak height as the �un-normalized� experimental distri-
butions. Panel b shows the normalized theoretical distribu-
tions without the artificial broadening width of 0.2 radians.
We note that the theory is able to account for both the asym-
metry in the angular distribution at the incidence angle of
45° as well as the fact that for an incidence angle of 70° one
remains with a single bell shaped function.

The disappearance of the double peaked structure at the
higher incident angle is well understood by considering the
angular dependence of the rainbow functions as a function of
the incident scattering angle as shown in Fig. 7, using the
same set of parameters as in Fig. 6. One notes that the rain-
bow angle functions decrease rapidly with increasing scatter-
ing angle. For �0=70° K1�2° so that thermal averaging in-
duced by the phonons masks the double peaked structure.
When �0=45° the rainbow width K1=20° is larger than the
variance of the distribution induced by coupling to the
phonons and so one remains with a double peaked distribu-
tion.

The analysis of the scattering of Xe on Ge complements
the analysis of the scattering of Ar on LiF. For the former
case, we showed that our theory naturally accounts for the
disappearance of the rainbow scattering feature as the angle
of incidence is increased at a fixed incident energy. For the
latter, we showed that the theory accounts well for the energy
dependence of the angular distribution at a fixed angle of
incidence.

There is though a serious shortcoming of the theory. For
the large scattering angle of 70°, the theory allows for a finite
probability of scattering at angles greater than 90°, some-
thing which is physically impossible. This is a result of the

first-order perturbation theory used, and it is insufficient. At
grazing angles, the momentum in the vertical direction is
much smaller than the momentum in the horizontal direction
so that the assumption of weak coupling breaks down.

The fits are not too sensitive with respect to the param-
eters used. We cannot pinpoint the well depth; however the
range of acceptable well depths is 200–300 meV. Likewise,
the friction coefficients may be changed by 20%–30%. The
ratio of the corrugation parameters is more sensitive; a good
fit to the experiment would allow a variation by no more than
20%. In other words, the parameters used provide a general
picture of the acceptable range, which is consistent with
known properties of the system as well as with the experi-
mental results. More detailed experimental results would
provide a more stringent test of the theory. For example,
measurement of the energy loss as a function of energy
would pinpoint the magnitude of the friction coefficients.
Here, we do note that our choice of the coupling functions
between the horizontal motion and the phonon bath as given
in Eq. �4.14� is qualitative. Different coupling functions
could lead to different choices for the friction coefficient.

4. Scattering of Ar on Ag(100)

The experimental results presented in Ref. 31 show that
the angular distribution evolves from a slightly asymmetric
angular distribution at an angle of incidence of 30°, to a
symmetric double peaked distribution at 45° to a single bell
shaped distribution at 60°. The surface temperature is not
reported in the paper, we assume that it is room temperature
�297 °K�. The model parameters used in this case are V0
=70 meV,52 l=2.8 Å,23 �=1.0714 Å−1, M =39.948 a.m.u,
h1=−0.1057, h2=0.0106 Å, �x /�0=0.001 39, and M2�0

3�z
=0.000 908. The incident energy is 2500 meV.

As in the case of the scattering of Xe on the Ge�100�
system, here too, the experimental distributions are broad-
ened. In Fig. 8�a� we compare the theoretical results �broad-

(b)(b)(a)

FIG. 6. �Color online� Angular distributions for the scattering of
Xe on a Ge�100� surface. The solid lines in panel a show the angu-
lar distributions obtained with the Morse potential model at the
incidence angles of 45 and 70 degrees. The solid circles are the
experimental angular distributions at the same angles of incidence
adapted from the paper by Amirav et al. �Ref. 31�. The normalized
theoretical distributions without the added empirical broadening are
shown in panel b. For further details, see the text.

FIG. 7. �Color online� Incident angle dependence of the �abso-
lute value of the� rainbow angle functions for the scattering of Xe
on Ge�100�. The solid line is for K1 the dashed line for K2. The
model parameters are the same as for Fig. 6. Note the sharp de-
crease in the rainbow angle functions with increasing incident scat-
tering angle.
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ened with a fixed width of 0.085 radians� with the measured
results of Amirav et al.31 One notes the quantitative agree-
ment. The asymmetry here is smaller than the asymmetry
found in the Xe-Ge�100� or the Ar-LiF�100� system. How-
ever, the trend is the same. The rainbow scattering appears at
low incident scattering angle and disappears as the scattering
angle is increased. This is seen more clearly in panel b of
Fig. 8 where we plot the normalized angular distributions
without the added broadening. As may be also seen from Fig.
9, the rainbow function K2 falls off faster with increasing
angle of incidence than the function K1. Therefore at the
incidence angle of 45° one still sees the rainbow scattering
however the asymmetry is almost gone. Increasing the angle
of incidence to 60° wipes out the rainbows completely and
one remains with a single peaked distribution.

5. Scattering of Kr on Ag(100)

This system is the most asymmetric of all systems ana-
lyzed in this paper. We have used the following parameters
for this case: V0=100 meV,52 l=2.8 Å,23 �=2.143 Å−1,
M =83.8 a.m.u, h1=−0.0450, h2=0.0476 Å, �x /�0
=0.000603, and M2�0

3�z=0.000431. The incident energy is
6600 meV and T=297 K.

The resulting angular distributions broadened by a con-
stant factor of 0.09 radians are compared in panel a of Fig.
10 with the experimental measurements. The fit in this case,
is not as good as in the previous ones, especially at the 45°
angle of incidence. The normalized theoretical distributions
without an extra broadening are shown in panel b. One notes
that the asymmetry is so strong that we predict a three
peaked distribution when the incident angle is 30° and that
the rainbow scattering may still be observed when the inci-
dent angle is 60°. For the parameter set used, the average
energy loss in the horizontal and vertical directions is 759

and 2467 meV, respectively. We note that qualitatively the
theory accounts well for the experimental observations. The
distance between the two central rainbows decreases with
increasing scattering angle, as does the asymmetry. This is
again well understood by looking at the �absolute value of
the� incidence angle dependence of the rainbow functions as
plotted in Fig. 11. K1 decreases with increasing incidence
angle as does K2, but more importantly, the ratio �K1 /K2�
increases with increasing angle of incidence, explaining why
the asymmetry becomes less important.

(b)(a)

FIG. 8. �Color online� Angular distributions for the scattering of
Ar on a Ag�100� surface. The solid lines in Panel a show the angu-
lar distributions obtained with the Morse potential model at the
incidence angles of 30, 45, and 60 degrees. The normalized distri-
butions were multiplied with a constant factor of 1.54, 1.02, and
0.92 for the angles of incidence of 30, 45, and 60 degrees, respec-
tively, to facilitate the comparison. One can identify each distribu-
tion according to its center, which is roughly at the specular angle.
The solid circles are the respective experimental angular distribu-
tions at the same angles of incidence adapted from the paper by
Amirav et al. �Ref. 31�. Panel b shows the corresponding normal-
ized theoretical distributions without the added broadening. For fur-
ther details, see the text.

FIG. 9. �Color online� Incident angle dependence of the �abso-
lute value of the� rainbow angle functions for the scattering of Ar on
Ag�100�. The solid line is for K1 the dashed line for K2, the dashed
dotted line shows the ratio K1 /K2 /10. The model parameters are the
same as for Fig. 8. Note the sharp decrease in the rainbow angle
functions with increasing incident scattering angle and the sharp
increase in the ratio of K1 /K2 with increasing incidence angle. This
sharp increase indicates that the asymmetry will disappear as the
angle of incidence is increased.

(b)(a)

FIG. 10. �Color online� Angular distributions for the scattering
of Kr on a Ag�100� surface. Panel �a� compares the angular distri-
butions obtained with the Morse potential model �solid lines� at the
incidence angles of 30, 45, and 60 degrees with the experimental
results �solid circles� adapted from Ref. 31. The normalized distri-
butions were multiplied with a constant factor of 1.3, 1.35, and 1.78
for the angles of incidence of 30, 45, and 60 degrees, respectively,
to facilitate the comparison. One can identify each distribution ac-
cording to its center, which is roughly at the specular angle. Panel
�b� shows the normalized theoretical distributions without the added
broadening used for comparison to the experimental results. Note
the predicted three peaked distribution at the 30° angle of incidence.
For further details, see the text.
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V. DISCUSSION

The central theme of this paper is a theory of rainbow
scattering for ratchet potentials. We have shown how addi-
tion of a single higher order �sine� term to the potential in-
duces asymmetric rainbow scattering as well as additional
rainbow angles. The theory includes interaction with two in-
dependent phonon baths: one associated with the vertical
motion, the other with the horizontal motion. It is important
to note that as in Ref. 42 the Hamiltonian we used is periodic
�with respect to the lattice length� in the horizontal coordi-
nate. As a result the angular shift ��1 is periodic in the
horizontal coordinate and this can also induce a further
asymmetry to the dynamics. The interesting topic of phonon
induced rainbows, which emerges from this observation, will
be considered separately elsewhere.53

Analytic formulas have been derived with a Morse oscil-
lator model. These are especially useful for obtaining a quali-
tative understanding of the dependence of the rainbow angles
on different features of the scattering. We have shown that
both rainbow angle functions decrease with increasing angle
of incidence; however the primary rainbow angle K1 de-
creases less than the secondary function K2. This leads to
two important qualitative features, observed experimentally.
The distance between the rainbow angles decreases with in-
creasing scattering angle, while the asymmetry decreases.

Our theory gives excellent agreement with the experimen-
tal results of Kondo et al.28 for the scattering of Ar on LiF.
We also applied the theory to the measurements of Amirav et
al.31 and found good agreement with experiment for all three
systems analyzed. All of these systems are symmetric, so that
in principle the corrugation function should be symmetric.
However, we noted that the asymmetry which is induced by
the actual flight of the particle as it approaches the surface is
well modeled in terms of the second-order sine term in the
corrugation function. Thus the asymmetric corrugation func-
tion used to fit the experiment should be considered as an
effective corrugation.

The Morse oscillator based theory has many parameters in
it. However, a thorough experimental measurement would

limit the parameter fitting. Ideally, the experiment would pro-
vide information on the energy loss as a function of inci-
dence energy. This would provide direct input for estimating
the friction parameters since they ”control” the energy loss.
Similarly, the asymmetry of the distribution is determined by
the corrugation parameter of the second-order term in the
horizontal potential, while the rainbow angles at a single
energy determine the corrugation height of the first-order
term. The well depth for the Morse potential can be esti-
mated from ab initio structure computations. Thus the only
really meaningful parameter which is more difficult to pin
down is � the stiffness parameter of the Morse potential.

Although many parameters enter the Morse oscillator
model, there are some clear qualitative features that emerge
from the model which are of general nature. For example,
the distance between the rainbow angles decreases with in-
creasing angle of incidence as well as with increasing inci-
dent energy. This explains why many scattering experiments
reveal only a single broad peak which is dominated by pho-
non scattering or other surface induced broadening. As a re-
sult, in these cases, one may ignore the corrugation taking
into account only the surface motion.43–45

In this paper, we have limited the analysis to the angular
distribution. The same expressions derived for the final joint
angle and energy distribution as well as final average energy
and its dependence on the scattering angle can be adapted
also for the ratchet potentials considered in this paper. All
that is needed is to add the relevant terms in the exponent.
One may also use these expressions to estimate sticking
probabilities and their dependence on the asymmetry.

Peskin and Moiseyev54,55 and Hernandez et al.56 predicted
that a ratchetlike potential can induce an asymmetry in the
angular distribution when flipping the crystal by 180° �or
equivalently by changing the angle of incidence from �0 to
−�0�. Such an asymmetry may also be found from the present
theory; however this too will be dealt with in detail
elsewhere.53

Finally, this paper was limited to two degrees of freedom,
that is, to in-plane scattering. There is nothing in principle
which limits the derivation; one can repeat the same reason-
ing allowing for the full three dimensional properties of the
scattering problem to be taken into account. The only diffi-
culty is that the resulting expressions do become more
complicated.
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APPENDIX A: ENERGY LOSSES AND MOMENTUM
CHANGES IN THE PRESENCE OF FRICTION

The derivation follows closely a similar derivation pro-
vided in Ref. 42. The central difference is that here the cor-

FIG. 11. �Color online� Incident angle dependence of the �abso-
lute value of the� rainbow angle functions for the scattering of Kr
on Ag�100�. The notation is as in Fig. 9, the model parameters are
the same as for Fig. 10.
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rugation potential is a sum of two terms, resulting from the
addition of the second Fourier component to the corrugation
potential. Details of the derivation are given in Ref. 42; here
we provide the final results which are important for the ac-
tual application of the theory. The final momentum in the
horizontal direction is given by the expression

px�t0� � px − pz0�K1 cos�2�

l
x�0�� + K2 cos�4�

l
x�0��	

+ �px,1 + �px,2

� px + �px. �A1�

Comparing to the previous result in the absence of friction,
we note that the coupling to the phonon bath induces a fric-
tional momentum shift �px,1 and a noise induced momentum
shift �px,2. The frictional momentum shift is �after an inte-
gration by parts�

�px,1 = − �x
px

2



−t0

t0

dtg2�zt� , �A2�

and the noise induced momentum shift is

�px,2 = �M�cos�2�

l
x�t0�	�

j=1

N

cjx
Xjcxjx

�t0�

+ sin�2�

l
x�t0�	�

j=1

N

cjx

Xjs

� jx

pjx
�t0��

� cos�2�

l
x�t0�	�px,2c + sin�2�

l
x�t0�	�px,2s

�A3�

with

Xjc = 

−t0

t0

dtg�zt��cos�2�

l

px

M
t�	cos�� jx

t� , �A4�

Xjs = − 

−t0

t0

dtg�zt�sin�2�

l

px

M
t�sin�� jx

t� , �A5�

where

xjx
�t0� = xjx

cos�� jx
t0� +

pjx

� jx

sin�� jx
t0� , �A6�

pjx
�t0� = − xjx

� jx
sin�� jx

t0� + pjx
cos�� jx

t0� , �A7�

x�t0� = x +
px

M
t0. �A8�

The average energy loss to the bath due to the motion in
the x direction42,48 is

��EB�x = �� − cos�4�

l
x�t0����x, �A9�

where

�� = E0 sin2��i0��x

−t0

t0

dt�g2�zt� +
1

�x
2�dg�zt�

dt
	2�

�A10�

and

��x = E0 sin2��i0��x

−t0

t0

dt cos�2�xt�

��g2�zt� +
1

�x
2�dg�zt�

dt
	2� . �A11�

The fluctuational energy loss in the horizontal direction is

�EBx
= �M

l

2�
�sin�2�

l
x�t0�	�

j=1

N

cjx
Xjcpjx

�t0�

+ cos�2�

l
x�t0�	�

j=1

N

cjx
Xjs� jx

xjx
�t0��

� sin�2�

l
x�t0�	�EBxs + cos�2�

l
x�t0�	�EBxc.

�A12�

The average energy loss to the bath due to the vertical
motion is �note that the dimension of �x is time−1 while that
of �z is time3 /mass2�

��EB�z = M�z

−t0

t0

dt�dV̄��zt�
dt

�2

� −
pz�pz,1

M
, �A13�

and the associated fluctuational energy loss is

�EBz
= − �M�

j=1

N cjz

� jz

Zjspjz
�t0� � −

pz�pz,2

M
�A14�

with

Zjs = 

−t0

t0

dt
dV̄��zt+t0

�

dt
sin�� jz

t� . �A15�

APPENDIX B: ANALYTIC RESULTS FOR THE MORSE
OSCILLATOR MODEL

Using the integrals specified in Sec. IV A one readily
finds �using Maple software� that the energy loss in the ver-
tical direction is
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��EB�z =
4M�z��2V0

2

15
� �cos4��� + 28 cos2��� + 16� − 15� cot����2 + cos2����

cos4��� � . �B1�

Similarly, using the coupling function g�z� as given in Eq. �4.14� we find the following results:

�px,1

px
= −

�x sin2���
�

�11 cos2��� + 4 − 3� cot����2 cos2��� + 3�
6 cos4��� � , �B2�

G � �

−�

�

dtg2�zt�cos�2�xt�

=
2� sin2���sinh�2�̄��

3 cos4���sinh�2�̄��
· �coth�2�̄���4�̄3 sin2��� + �̄�11 cos2��� + 4�� − 6�̄2 sin�2�� − cot����3 cos2��� +

9

2
�	 ,

�B3�

�� =
M�̄2�x�l2

24�2 sin2����11 cos2��� + 4 − 3� cot����2 cos2��� + 3�
cos4��� �

+
M�x�l2

120�2 �6 cos4��� + 83 cos2��� + 16 − 15� cot����4 cos2��� + 3�
cos4��� � , �B4�

��x =
M�x�l2

60� cos4���sinh�2�̄��
cosh�2�̄�� · �4�̄5 sin4��� + �̄3 sin2����35 cos2��� + 20� + �̄�6 cos4��� + 83 cos2��� + 16��

−
M�x�l2

24� cos3���sinh�2�̄��
sinh�2�̄�� · �8�̄4 sin3��� + �̄2 sin����10 cos2��� + 29� + 3

4 cos2��� + 3

sin��� � . �B5�

These analytic results are all that is needed to compute the angular shift of Eq. �3.18�; the variance as given in Eq. �3.17� and
thus the angular distribution as given in Eq. �3.16�. Only the remaining integration over the horizontal coordinate needs to be
carried out numerically.
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